
IBM Open Enterprise SDK for Python 3.9

User's Guide

IBM

SC28-3143-01 (2021-01-12 updated)

This edition applies to version 3.9 of IBM® Open Enterprise SDK for Python (order number: SC28-3143-01) and to all
subsequent releases and modifications until otherwise indicated in new editions.

It is our intention to update the product documentation for this release periodically, without updating the order number.
If you need to uniquely refer to the version of your product documentation, refer to the order number with the date of
update.

Last updated: 2021-1-12
© Copyright International Business Machines Corporation 2021.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Chapter 1. Overview.. 1

Chapter 2. Blogs and videos... 3

Chapter 3. Installation and configuration... 5
Installing and configuring the SMP/E edition.. 5
Installing and configuring the PAX edition.. 6
Customization and environment configuration... 7

Chapter 4. Getting started with IBM Open Enterprise SDK for Python......................9

Chapter 5. Package documentation for zos_util.. 11

Chapter 6. Information on using distutils module..13

Chapter 7. Codesets and translation...17
Supported codesets...18
Tagging behaviors.. 21

Chapter 8. Virtual environments and considerations... 23

Chapter 9. Debugging.. 25

Chapter 10. Troubleshooting.. 29
Multiprocessing considerations...32
Tagging files... 32

Chapter 11. Support, best practices, and resources.. 35
Support...35
Best practices.. 36
Learning resources...37

 iii

iv

Chapter 1. Overview
IBM Open Enterprise SDK for Python is an industry-standard Python interpreter for the z/OS® platform. It
brings a powerful framework for building fast and scalable applications to the z/OS platform. IBM Open
Enterprise SDK for Python 3.9 is the follow-on product to IBM Open Enterprise Python for z/ OS 3.8 and is
based on the open source Python 3.9 community release, and includes a number of enhancements.

Python is a programming language with simple programming syntax, a rich ecosystem of modules, the
capability to interact with other languages and platforms, and strong community support across multiple
industries drive its popularity.

IBM Open Enterprise SDK for Python 3.9 includes:

• A port of Python 3.9 from the Python Software Foundation (PSF).
• A Python interpreter that leverages the latest IBM z/Architecture® instructions and provides support on

IBM z/OS for applications written in the Python programming language.
• The Python Standard Library, which provides an extensive set of functions that can save development

resources in creating applications.
• Access to a growing collection of several thousand additional packages, available from the Python

Package Index (PyPI).
• Support for ASCII, ECDIC, and Unicode character sets to provide users with choice of encodings.

For more information about the new features in Python 3.9, compared to 3.8, see the What’s New In
Python 3.9 (https://docs.python.org/3/whatsnew/3.9.html) in the official Python documentation and for
more useful IBM learning resources for Python, see “Learning resources” on page 37.

© Copyright IBM Corp. 2021 1

https://docs.python.org/3/whatsnew/3.9.html

2 IBM Open Enterprise SDK for Python 3.9: User's Guide

Chapter 2. Blogs and videos

This topic collects some handy blogs and videos for IBM Open Enterprise SDK for Python.

• Blog: Running Pandas on IBM Open Enterprise Python for z/OS
• Video: How to set up a virtual environment using IBM Open Enterprise Python for z/OS
• Blog: Using IBM Open Enterprise Python for z/OS and ZOAU to Work With Datasets
• Blog: Using Python for z/OS to Work With Db2 Data
• Video: How to create a native package with IBM Open Enterprise Python for z/OS

© Copyright IBM Corp. 2021 3

https://community.ibm.com/community/user/ibmz-and-linuxone/blogs/steven-pitman1/2020/10/02/running-pandas-on-ibm-open-enterprise-python-for-z
https://mediacenter.ibm.com/media/1_tpjlr333
https://community.ibm.com/community/user/ibmz-and-linuxone/blogs/austin-wells1/2020/12/11/using-ibm-open-enterprise-python-for-zos-and-zoau
https://community.ibm.com/community/user/ibmz-and-linuxone/blogs/steven-pitman1/2020/11/05/using-python-for-zos-to-work-with-db2-data
https://mediacenter.ibm.com/media/1_b6mjzc4v

4 IBM Open Enterprise SDK for Python 3.9: User's Guide

Chapter 3. Installation and configuration

IBM Open Enterprise SDK for Python is available in two installation formats, SMP/E and PAX. Select the
installation format that applies to you:

• “Installing and configuring the SMP/E edition” on page 5
• “Installing and configuring the PAX edition” on page 6

For customization and environment configuration information, see “Customization and environment
configuration” on page 7.

Installing and configuring the SMP/E edition
The Program Directory (http://publibfp.boulder.ibm.com/epubs/pdf/i1354061.pdf) for the product
provides detailed specific installation requirements and instructions in Chapter 5 and Chapter 6. For
information about the latest APAR fixes, see the Fix list for IBM Open Enterprise SDK for Python (https://
www.ibm.com/support/pages/node/6232646).

The following checklist summarizes the key configuration steps for a successful installation.

Hardware requirements

• z15™™

• z14®/z14 model ZR1
• z13®/z13s®

• zEnterprise® EC12/BC12

Software requirements

• z/OS UNIX System Services enabled on any of the following operating systems:

– z/OS V2R3
– z/OS V2R4, or later

• Integrated Cryptographic Services Facility (ICSF) must be enabled on systems where IBM Open
Enterprise SDK for Python runs. For more information, see ICSF System Programmer's Guide
(https://www-304.ibm.com/servers/resourcelink/svc00100.nsf/pages/
zOSICSFFmidHCR77C0sc147507/$file/csfb200_icsf_spg_hcr77c0.pdf) (SC14-7507) and ICSF
Administrator's Guide (https://www-304.ibm.com/servers/resourcelink/svc00100.nsf/pages/
zOSICSFFmidHCR77C0sc147506/$file/csfb300_icsf_admin_hcr77c0.pdf) (SC14-7506).

• Optional: Packages that are installed with pip might include source that is written in other
programming languages. It is your responsibility to ensure that compilers are available for other
languages. By default, Python looks for /bin/xlc in UNIX System Services to compile C modules,
and for both /bin/xlc and /bin/xlc++ to compile C++ modules. The Python interpreter by
default uses /bin/xlc to link these modules.

Configuration
IBM Open Enterprise Python for z/OS is an OMVS-based application, which requires certain configuration
on the z/OS UNIX System Services file system to ensure proper operation.

• Validate that /usr/bin/env exists. If not configured, refer to the instructions in “Customization and
environment configuration” on page 7.

• Ensure that /tmp has at least 660 MB or more of disk space configured. To use an alternative file
system, you can set the TMPDIR environment variable to a directory that has sufficient space.

© Copyright IBM Corp. 2021 5

http://publibfp.boulder.ibm.com/epubs/pdf/i1354061.pdf
https://www.ibm.com/support/pages/node/6232646
https://www.ibm.com/support/pages/node/6232646
https://www-304.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSICSFFmidHCR77C0sc147507/$file/csfb200_icsf_spg_hcr77c0.pdf
https://www-304.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSICSFFmidHCR77C0sc147507/$file/csfb200_icsf_spg_hcr77c0.pdf
https://www-304.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSICSFFmidHCR77C0sc147506/$file/csfb300_icsf_admin_hcr77c0.pdf
https://www-304.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSICSFFmidHCR77C0sc147506/$file/csfb300_icsf_admin_hcr77c0.pdf

Default installation location for IBM Open Enterprise SDK for Python
The default Python SMP/E installation location on z/OS is /usr/lpp/IBM/cyp/v3r9/pyz.

Environment variables for SMP/E installation
Set the following environment variables before using IBM Open Enterprise SDK for Python.

Configure the PATH and LIBPATH environment variables to include the bin directories for IBM Open
Enterprise SDK for Python with the following commands:

export PATH=/usr/lpp/IBM/cyp/v3r9/pyz/bin:$PATH
export LIBPATH=/usr/lpp/IBM/cyp/v3r9/pyz/lib:$LIBPATH

Set the auto conversion environment variables:

export _BPXK_AUTOCVT='ON'
export _CEE_RUNOPTS='FILETAG(AUTOCVT,AUTOTAG) POSIX(ON)'

Set the file tagging environment variables:

export _TAG_REDIR_ERR=txt
export _TAG_REDIR_IN=txt
export _TAG_REDIR_OUT=txt

When building packages with distutils or pip, you may encounter build errors related to the compiler
argument processing. If you observe these errors while attempting to build a package or extension,
please see setting CCMODE step in “Customization and environment configuration” on page 7.

Installing and configuring the PAX edition
The requirements for installing IBM Open Enterprise SDK for Python 3.9 are listed below.
Hardware requirements

• z15™

• z14®/z14 model ZR1
• z13/z13s
• zEnterprise EC12/BC12

Software requirements

• z/OS UNIX System Services enabled on any of following operating system:

– z/OS V2R3
– z/OS V2R4, or later

• You must enable the Integrated Cryptographic Services Facility (ICSF) on systems where IBM Open
Enterprise SDK for Python runs. For more information, see ICSF System Programmer's Guide
(https://www-304.ibm.com/servers/resourcelink/svc00100.nsf/pages/
zOSICSFFmidHCR77C0sc147507/$file/csfb200_icsf_spg_hcr77c0.pdf) (SC14-7507) and ICSF
Administrator's Guide (https://www-304.ibm.com/servers/resourcelink/svc00100.nsf/pages/
zOSICSFFmidHCR77C0sc147506/$file/csfb300_icsf_admin_hcr77c0.pdf) (SC14-7506).

• Optional: Packages that are installed with pip might include source that is written in other
programming languages. It is your responsibility to ensure that compilers are available for other
languages. By default, Python looks for /bin/xlc in UNIX System Services to compile C modules,
and for both /bin/xlc and /bin/xlc++ to compile C++ modules. The Python interpreter by
default uses /bin/xlc to link these modules.

6 IBM Open Enterprise SDK for Python 3.9: User's Guide

https://www-304.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSICSFFmidHCR77C0sc147507/$file/csfb200_icsf_spg_hcr77c0.pdf
https://www-304.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSICSFFmidHCR77C0sc147507/$file/csfb200_icsf_spg_hcr77c0.pdf
https://www-304.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSICSFFmidHCR77C0sc147506/$file/csfb300_icsf_admin_hcr77c0.pdf
https://www-304.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSICSFFmidHCR77C0sc147506/$file/csfb300_icsf_admin_hcr77c0.pdf

Configuration
IBM Open Enterprise Python for z/OS is an OMVS-based application, which requires certain configuration
on the z/OS UNIX System Services file system to ensure proper operation.

• Validate that /usr/bin/env exists. If not configured, refer to the instructions in “Customization and
environment configuration” on page 7.

• Ensure that /tmp has at least 660 MB or more of disk space configured. To use an alternative file
system, you can set the TMPDIR environment variable to a directory that has sufficient space.

Install the PAX archive file
• 250 MB is required to download the PAX archive file.
• Minimum 660 MB is required to extract and install Python.
• Create a directory <mydir> to hold the extracted PAX files.
• Unpax the downloaded file with the following command:

$ cd <mydir>
$ pax -p p -r -f <path to downloaded paxfile>

Environment variables for PAX archive installation
Set the following environment variables before using IBM Open Enterprise SDK for Python.

Configure the PATH and LIBPATH environment variables to include the bin directories for IBM Open
Enterprise SDK for Python with the following commands:

export PATH=<path to install dir>/bin:$PATH
export LIBPATH=<path to install dir>/lib:$LIBPATH

Set the auto conversion environment variables:

export _BPXK_AUTOCVT='ON'
export _CEE_RUNOPTS='FILETAG(AUTOCVT,AUTOTAG) POSIX(ON)'

Set the file tagging environment variables:

export _TAG_REDIR_ERR=txt
export _TAG_REDIR_IN=txt
export _TAG_REDIR_OUT=txt

When building packages with distutils or pip, you may encounter build errors related to the compiler
argument processing. If you observe these errors while attempting to build a package or extension,
please see setting CCMODE step in “Customization and environment configuration” on page 7.

Customization and environment configuration
IBM Open Enterprise SDK for Python requires /usr/bin/env, but your system might only have /bin/
env. You can take the following steps to verify the path for the env command.

1. Ensure that /usr/bin/env exists and provides a correct listing of the environment. In an SSH or
Telnet shell environment, run the following command to verify the location and contents of env. The
command returns a list of name and value pairs for the environment in your shell.

/usr/bin/env

If /usr/bin/env does not exist, complete the following steps to set it up:

a. Locate the env program on your system. A potential location is /bin/env.

Chapter 3. Installation and configuration 7

b. Create a symbolic link (symlink) so that /usr/bin/env resolves to the true location of env. For
example:

ln -s /bin/env /usr/bin/env

c. In an SSH or Telnet shell environment, run the following command to verify if the symlink works.
The command returns a list of name and value pairs for the environment in your shell.

/usr/bin/env

2. Verify that the symbolic link for the env command persists across system IPLs.

Depending on how /usr/bin/ is configured on your system, the symbolic link for /usr/bin/env
might not persist across an IPL without extra setup. Ensure that your IPL setup includes creation of
this symbolic link, if necessary.

3. If you intend to build or install packages that make the use of IBM XLC for z/OS, it is advisable to set
the following environment variables:

export _CC_CCMODE=1
export _CXX_CCMODE=1
export _C89_CCMODE=1

The distutils module may also emit files that do not have a standard extensions. This may cause
XLC to error. To disable these errors it is also recommended to export the following environment
variables:

export _CC_EXTRA_ARGS=1
export _CXX_EXTRA_ARGS=1
export _C89_EXTRA_ARGS=1

Optional: Set symlinks for /usr/bin. When using pip, some packages expect Python to be installed
into /usr/bin. You can set symlinks by running the following commands:

1. ln -sf <install directory>/bin/python3 /usr/bin/python

2. ln -sf <install directory>/bin/python3 /usr/bin/python3

3. ln -sf <install directory>/bin/python3 /usr/bin/python3.9

Note that <install directory> in the above examples is the path you chose for installation.

8 IBM Open Enterprise SDK for Python 3.9: User's Guide

Chapter 4. Getting started with IBM Open Enterprise
SDK for Python

Ensure the required environment variables are set before getting started with IBM Open Enterprise SDK
for Python. See “Environment variables for SMP/E installation” on page 6 or “Environment variables for
PAX archive installation” on page 7.

Verify your Python version
Check your Python version with the following line:

$ python3 --version

Check your Python installation location with the following line:

$ python3 -c "import sys; print(sys.executable)"

"Hello world!" script
If the version number and executable path are correct, you are now ready to write your Python script.

For an EBCDIC (code page 1047) encoded file, perform the following steps:

$ vi test_script_ebcdic_enc.py

def main():
 print("hello world!")

if __name__ == "__main__":
 main()

$ chtag -tc IBM-1047 test_script_ebcdic_enc.py
$ python3 test_script_ebcdic_enc.py

For a UTF-8 encoded file, perform the following steps:

$ vi test_script_utf8_enc.py

def main():
 print("hello world!")

if __name__ == "__main__":
 main()

$ chtag -tc ISO8859-1 test_script_utf8_enc.py
$ python3 test_script_utf8_enc.py

The message is printed as follows:

hello world!

Note: Ensure that your scripts are tagged correctly to avoid syntax and encoding errors. For more
information, see Chapter 7, “Codesets and translation,” on page 17.

© Copyright IBM Corp. 2021 9

10 IBM Open Enterprise SDK for Python 3.9: User's Guide

Chapter 5. Package documentation for zos_util

The zos_util is an extended standard OS module Python package that allows users to set, reset, and
display extended file attributes on z/OS.

Functions
zos_util.chtag(filepath, ccsid=819, set_txtflag=True)

changes information in a file tag. A file tag is composed of a numeric coded character set identifier
(ccsid) and a text flag (set_txtflag) codeset.
set_txtflag = True indicates that the file has uniformly encoded text data.
set_txtflag = False indicates that the file has non-uniformly encoded text data.

zos_util.untag(filepath)
removes any tagging information that is associated with the file and sets the status of the file to
untagged.

zos_util.get_tag_info(filepath)
returns a tuple of file tagging information (ccsid, set_txtflag) associated with the file.

zos_util.tag_binary(filepath)
changes the file tag to binary mode to indicate that the file contains only binary (non-uniformly
encoded) data.

zos_util.tag_text(filepath)
changes the file tag to text mode, which indicates that the specified file contains pure text (uniformly
encoded) data.
The existing ccsid that is associated with the file is retained.

zos_util.tag_mixed(filepath)
changes the file tag to mixed mode, which indicates that the file contains mixed text and binary data.
The existing ccsid that is associated with the file is retained.

zos_util.enable_apf(filepath)
sets APF-authorized attribute on an executable program file (load module). It behaves as if the file is
loaded from an APF-authorized library and raises PermissionError exception when the operation
fails.

zos_util.disable_apf(filepath)
unsets APF-authorized attribute on an executable program file. It behaves the same as removing the
file from an APF-authorized library and raises PermissionError exception when the operation fails.

Examples

import zos_util
import tempfile
f = tempfile.NamedTemporaryFile()
To specify a file with IBM-1047 code set
fpath = f.name
zos_util.chtag(fpath, 1047)

To specify a file with ISO8859-1 code set
zos_util.chtag(fpath)
tag_info = zos_util.get_tag_info(fpath)
print(f"CCSID:{tag_info[0]}, TXT_FLAG:{tag_info[1]}")

set to tag_mixed mode
zos_util.tag_mixed(fpath)
tag_info = zos_util.get_tag_info(fpath)
print(f"CCSID:{tag_info[0]}, TXT_FLAG:{tag_info[1]}")

remove the tag from the file
zos_util.untag(fpath)

© Copyright IBM Corp. 2021 11

tag_info = zos_util.get_tag_info(fpath)
print(f"CCSID:{tag_info[0]}, TXT_FLAG:{tag_info[1]}")

The output is printed as follows:

CCSID:819, TXT_FLAG:True
CCSID:819, TXT_FLAG:False
CCSID:0, TXT_FLAG:False

12 IBM Open Enterprise SDK for Python 3.9: User's Guide

Chapter 6. Information on using distutils module

Distutils is the primary way of building and distributing Python packages. For more information about
distils, see distutils — Building and installing Python modules (https://docs.python.org/3/library/
distutils.html) in the official Python documentation.

Writing a module
You can use the typical layout for a Python package or module as follows:

README
LICENSE
setup.py
requirements.txt
src/
 module.py
 module.c
include/
 module.h
docs/
 conf.py
 index.rst
tests/
 test_module.py

The setup.py is the makefile equivalent for Python modules and it is often invoked through the
following commands:
python3 setup.py build

builds the package, but does not install it.
python3 setup.py sdist

builds a source distributable tape archived file of the package and contains all the source of your
modules.

python3 setup.py bdist
builds a binary distributable tape archived file of the package and contains only object files of your
compiled code.

python3 setup.py install
installs the package to <python install location>/lib/site-packages/<your package
here>.

python3 setup.py check
checks the package for correctness.

Distutils by default uses the compiler located at /bin/xlc to compile C source files. If you have set the
environment variable CC, the compiler defined by the CC variable is used instead. If the Python package
requires a C++ compiler, /bin/xlc++ is used as by default unless the CXX environment variable is set, in
which case the compiler defined by the CXX variable is used. Similarly, /bin/xlc is used as the default
linker for both shared and static libraries. If LD or LDSHARED are set, LD and LDSHARED, are used for each
library type respectively.

When building packages with distutils or pip you may encounter build errors related to compiler
argument processing. When building packages with distutils or pip you may encounter build errors
related to compiler argument processing. Distutils may not always emit compile commands where it is
true. For more tips about using IBM XLC for z/OS, see setting CCMODE step in “Customization and
environment configuration” on page 7.

The usage of xlclang and xlclang++ is also supported. You can export CC=<path to xlclang> and
CXX=<path to xlclang++> to enable xlclang or xlclang++.

Note: There might be compatibility issues when mixing xlc and xlclang for compiled code and thus only
one should be used consistently for building and linking modules.

© Copyright IBM Corp. 2021 13

https://docs.python.org/3/library/distutils.html
https://docs.python.org/3/library/distutils.html

On z/OS, DLL (.dll) and shared object (.so) files require a special file called a definition side-deck. The
side-deck describes the functions and the variables that can be imported from a DLL by the binder. These
files are generated automatically by the compiler when creating a DLL or shared object. For more
information about side-decks, see Binding z/OS XL C/C++ programs (https://www.ibm.com/support/
knowledgecenter/en/SSLTBW_2.4.0/com.ibm.zos.v2r4.cbcux01/binding.html) in z/OS XL C/C++ User's
Guide.

Side-deck considerations: Python.x is included by default and for other libraries, distutils
automatically attempts to find the relevant side-decks. However, side-decks can be explicitly added to
the build by using the extra_compile_args parameter to the Extension Class in setup.py.

Note: By default, distutils automatically supplies compilation and linking parameters for Python header
files and libpython side-decks.

Note: If you use a dynamic library for Python packages, you should ensure that all .so or .dll files are
found in your LIBPATH.

Troubleshooting
For more information about errors using distutils, see “Errors when using distutils” on page 30.

Examples
A simple setup.py for a pure Python module is as follows:

from distutils.core import setup
setup(name='example',
 version='1.0',
 description='An example package for distutils',
 author='John Doe',
 author_email='john.doe@ibm.com',
 url='https://www.ibm.com',
 packages=["ibm_example"],
)

The corresponding file layout would be as follows:

example/
 setup.py
 ibm_example/
 __init__.py

If you want to add a C source file to the module, you can do it with the following lines:

from distutils.core import setup
setup(name='example',
 version='1.0',
 description='An example package for distutils',
 author='John Doe',
 author_email='john.doe@ibm.com',
 url='https://www.ibm.com',
 packages=["ibm_example"],
 ext_modules=[Extension('foo', ['src/foo1.c', 'src/foo2.c'], include_dirs=['include'])]
)

The file layout would be as follows:

example/
 setup.py
ibm_example/
 __init__.py
include/
 foo.h
src/
 foo1.c
 foo2.c

Note: You can also add C++ files in an analogous manner. Make sure that you use the appropriate file
extensions, since this is how Python determines which compiler to invoke for the source files. If you

14 IBM Open Enterprise SDK for Python 3.9: User's Guide

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.4.0/com.ibm.zos.v2r4.cbcux01/binding.html
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.4.0/com.ibm.zos.v2r4.cbcux01/binding.html

include several modules that are specified with different extensions, a separate shared library is produced
per extension.

A setup.py example with an explicit side-deck is as follows:

from distutils.core import setup
setup(name='example',
 version='1.0',
 description='An example package for distutils',
 author='John Doe',
 author_email='john.doe@ibm.com',
 url='https://www.ibm.com',
 packages=["ibm_example"],
 ext_modules=[Extension('foo', ['src/foo1.c', 'src/foo2.c'], include_dirs=['include'],
extra_compile_args=[/usr/lib/example.x])]
)

If your module requires the use of dll or .so files, distutils automatically attempts to find them. When
the side-deck is in a non-standard location, you should modify your setup.py to include the side-deck
with extra_compile_args as shown above.

Best practice
When writing modules for Python, you should consider external dependencies, which can be located in
non-typical locations, or in locations that are platform-dependent. To alleviate the non-typical locations
issue, you can create a setup.cfg file that allows you to specify values at installation time. For more
information on setup.cfg files, see Writing the Setup Configuration File (https://docs.python.org/3/
distutils/configfile.html). For more information on how to extend Python with C or C++, see Python/C API
Reference Manual (https://docs.python.org/3/c-api/index.html).

Chapter 6. Information on using distutils module 15

https://docs.python.org/3/distutils/configfile.html
https://docs.python.org/3/distutils/configfile.html
https://docs.python.org/3/c-api/index.html

16 IBM Open Enterprise SDK for Python 3.9: User's Guide

Chapter 7. Codesets and translation

All text that exists in the Python interpreter is represented as UTF-8. Support for explicit conversion of
the text in IBM Open Enterprise SDK for Python is enabled through both the built-in codecs library and
the provided EBCDIC package. Additional information about the codecs module can be found at codecs
in the Python official documentation.

Both IBM-1047 and ASCII source files are supported. It is recommended that you tag all source files with
their correct encodings. During the open operation, there are three cases to deal with a file or pipe as
follows:

• If a file or pipe is untagged, IBM Open Enterprise SDK for Python attempts to automatically determine
the encoding and run the source file.

• If a file or pipe is tagged, IBM Open Enterprise SDK for Python attempts to decode it by using the tagged
encoding.

• If the encoding parameter is specified during the open operation, IBM Open Enterprise SDK for Python
will ignore the source tagged encoding, and use the specified encoding. For more details about tagging
behavior, see “Tagging behaviors” on page 21.

You should note that while the source file might be EBCDIC, all I/O continues to be in UTF-8 unless
explicit conversions are performed.

By default, IBM Open Enterprise SDK for Python performs conversion to UTF-8 on all I/O, even in binary
mode. This allows the execution of most existing code that is not tag- or encoding-aware. However, in
situations, where an unconverted byte stream is desired, for example, consuming binary data and using
checksums to verify content, setting the environment variable PYTHON_BINARY_CVT to OFF will disable
auto-conversion of files opened in binary mode, for example, with flag 'rb', 'wb', or 'ab'. This matches the
behavior of community CPython. Note that this may be problematic on z/OS when processing and relying
upon tagged files or when UTF-8 is expected.

Note: Setting this flag also disables the tagging of all files written in binary mode and may alter the
behavior of the existing code.

For more information about supported codesets, see “Supported codesets” on page 18. For more
information about tagging behaviors, see “Tagging behaviors” on page 21.

Examples
To open, read, and write from or to an IBM-1047 file, use the following commands:

>>> f = open('./test', mode='w+', encoding='cp1047')
>>> lines = f.readlines()
>>> f.write('hello world')
>>> for line in lines:
. . . f.write(line)
>>> f.close()

To print to stdout with IBM1047, use the following commands:

>>> s = "Hello World".encode("cp1047") # this converts our internally UTF-8 string into a bytes
object with the ebcdic character values
>>> print(s)
b'\xc8\x85\x93\x93\x96@\xe6\x96\x99\x93\x84'

To print to stdout with the EBCDIC package, use the following commands beginning with the import:

>>> import ebcdic
>>> s = "hello world".encode('cp1047')
>>> print(s)
b'\xc8\x85\x93\x93\x96@\xe6\x96\x99\x93\x84'

© Copyright IBM Corp. 2021 17

https://docs.python.org/3/library/codecs.html

Supported codesets
This table lists the supported Coded Character Set Identifiers (CCSIDs) that are defined.

Table 1. Supported codesets for IBMOpen Enterprise SDK for Python

CCSID Encoding Alias' Languages supported

819 ascii 646, us-ascii English

947 big5 big5-tw, csbig5 Traditional Chinese

big5hkscs big5-hkscs, hkscs Traditional Chinese

037 cp037 IBM037, IBM039 English

273 cp273 German

290 cp290 Japanese Katakana

424 cp424 EBCDIC-CP-HE, IBM424 Hebrew

437 cp437 437, IBM437 English

500 cp500 EBCDIC-CP-BE,
EBCDIC-CP-CH, IBM500

Western Europe

720 cp720 Arabic

737 cp737 Greek

775 cp775 IBM775 Baltic languages

838 cp838

850 cp850 850, IBM850 Western Europe

852 cp852 852, IBM852 Central and Eastern
Europe

855 cp855 855, IBM855 Bulgarian, Byelorussian,
Macedonian, Russian,
Serbian

856 cp856 Hebrew

857 cp857 857, IBM857 Turkish

860 cp860 860, IBM860 Portuguese

861 cp861 861, CP-IS, IBM861 Icelandic

862 cp862 862, IBM862 Hebrew

863 cp863 863, IBM863 Canadian

864 cp864 IBM864 Arabic

865 cp865 865, IBM865 Danish, Norwegian

866 cp866 866, IBM866 Russian

869 cp869 869, CP-GR, IBM869 Greek

874 cp874 Thai

875 cp875 Greek

932 cp932 932, ms932, mskanji,
ms-kanji

Japanese

18 IBM Open Enterprise SDK for Python 3.9: User's Guide

Table 1. Supported codesets for IBMOpen Enterprise SDK for Python (continued)

CCSID Encoding Alias' Languages supported

949 cp949 949, ms949, uhc Korean

950 cp950 950, ms950 Traditional Chinese

1006 cp1006 Urdu

1026 cp1026 1026, ibm1026 Turkish

1047 cp1047 1047, ibm1047 Western Europe

1097 cp1097 Farsi

1125 cp1125 1125, ibm1125,
cp866u, ruscii

Ukrainian and
Belarusian

1140 cp1140 Western Europe

1141 cp1141 Western Europe

1142 cp1142 Danish-Norwegian

1143 cp1143 Finnish-Swedish

1144 cp1144 Italian

1145 cp1145 Spanish

1146 cp1146 English(UK)

1147 cp1147 French

1148 cp1148 Western Europe

1149 cp1149 Icelandic

1250 cp1250 windows-1250 Central and Eastern
Europe

1251 cp1251 windows-1251 Bulgarian, Byelorussian,
Macedonian, Russian,
Serbian

1252 cp1252 windows-1252 Western Europe

1253 cp1253 windows-1253 Greek

1254 cp1254 windows-1254 Turkish

1255 cp1255 windows-1255 Hebrew

1256 cp1256 windows-1256 Arabic

1257 cp1257 windows-1257 Baltic languages

1258 cp1258 windows-1258 Vietnamese

1350 euc_jp eucjp, ujis, u-jis Japanese

9582 euc_jis_2004 jisx0213, eucjis2004 Japanese

9591 euc_jisx0213 eucjisx0213 Japanese

971 euc_kr euckr, korean, ksc5601,
ks_c-5601,
ks_c-5601-1987,
ksx1001, ks_x-1001

Korean

Chapter 7. Codesets and translation 19

Table 1. Supported codesets for IBMOpen Enterprise SDK for Python (continued)

CCSID Encoding Alias' Languages supported

gb2312 chinese,
csiso58gb231280, euc-
cn, euccn, eucgb2312-
cn, gb2312-1980,
gb2312-80, iso-ir-58

Simplified Chinese

936 gbk 936, cp936, ms936 Unified Chinese

9444 gb18030 gb18030-2000 Unified Chinese

hz hzgb, hz-gb, hz-gb-2312 Simplified Chinese

17336 iso2022_jp csiso2022jp, iso2022jp,
iso-2022-jp

Japanese

17337 iso2022_jp_1 iso2022jp-1, iso-2022-
jp-1

Japanese

iso2022_jp_2 iso2022jp-2, iso-2022-
jp-2

Japanese, Korean,
Simplified Chinese,
Western Europe, Greek

iso2022_jp_2004 iso2022jp-2004,
iso-2022-jp-2004

Japanese

iso2022_jp_3 iso2022jp-3, iso-2022-
jp-3

Japanese

iso2022_jp_ext iso2022jp-ext,
iso-2022-jp-ext

Japanese

iso2022_kr csiso2022kr, iso2022kr,
iso-2022-kr

Korean

819 latin_1 iso-8859-1, iso8859-1,
8859, cp819, latin,
latin1, L1

West Europe

25488 iso8859_2 iso-8859-2, latin2, L2 Central and Eastern
Europe

iso8859_3 iso-8859-3, latin3, L3 Esperanto, Maltese

iso8859_4 iso-8859-4, latin4, L4 Baltic languagues

25491 iso8859_5 iso-8859-5, cyrillic Bulgarian, Byelorussian,
Macedonian, Russian,
Serbian

iso8859_6 iso-8859-6, arabic Arabic

iso8859_7 iso-8859-7, greek,
greek8

Greek

iso8859_8 iso-8859-8, hebrew Hebrew

iso8859_9 iso-8859-9, latin5, L5 Turkish

iso8859_10 iso-8859-10, latin6, L6 Nordic languages

iso8859_13 iso-8859-13 Baltic languages

iso8859_14 iso-8859-14, latin8, L8 Celtic languages

20 IBM Open Enterprise SDK for Python 3.9: User's Guide

Table 1. Supported codesets for IBMOpen Enterprise SDK for Python (continued)

CCSID Encoding Alias' Languages supported

iso8859_15 iso-8859-15 Western Europe

johab cp1361, ms1361 Korean

1167 koi8_r Russian

1168 koi8_u Ukrainian

1283 mac_cyrillic maccyrillic Bulgarian, Byelorussian,
Macedonian, Russian,
Serbian

1280 mac_greek macgreek Greek

1286 mac_iceland maciceland Icelandic

1282 mac_latin2 maclatin2,
maccentraleurope

Central and Eastern
Europe

1285 mac_roman macroman Western Europe

1281 mac_turkish macturkish Turkish

ptcp154 csptcp154, pt154,
cp154, cyrillic-asian

Kazakh

shift_jis csshiftjis, shiftjis, sjis,
s_jis

Japanese

shift_jis_2004 shiftjis2004, sjis_2004,
sjis2004

Japanese

1393 shift_jisx0213 shiftjisx0213, sjisx0213,
s_jisx0213

Japanese

utf_16 U16, utf16 all languages

13489 utf_16_be UTF-16BE all languages (BMP only)

13491 utf_16_le UTF-16LE all languages (BMP only)

utf_7 U7 all languages

13497 utf_8 U8, UTF, utf8 all languages

Tagging behaviors
File tags are used to identify the code set (encoding) of text data within files. IBM Open Enterprise SDK for
Python supports auto tagging files opened by using the open built-in function. Below is a table that
enumerates the behavior of file tags after Python I/O. This behavior is a special case for both UTF-8 and
CP1047. Support for file tags with other encodings is enabled by the zos_util package. For more
information about zos_util package, see Chapter 5, “Package documentation for zos_util,” on page 11 and
for more information about z/OS file tags, see File tagging in Enhanced ASCII (https://www.ibm.com/
support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.bpxa400/bpxug294.htm) section in z/OS
UNIX System Services User's Guide (https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/
com.ibm.zos.v2r3.bpxa400/abstract.htm).

Chapter 7. Codesets and translation 21

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.bpxa400/bpxug294.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.bpxa400/bpxug294.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.bpxa400/abstract.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.bpxa400/abstract.htm

Table 2. File tags for open built-in function

File name Tag (before I/O) Specified encoding Resulting tag (after
I/O)

test_file_1 (none) cp1047 cp1047

test_file_1 iso8859-1 cp1047 cp1047

test_file_1 cp1047 cp1047 cp1047

test_file_2 (none) (none) iso8859-1

test_file_2 iso8859-1 (none) iso8859-1

test_file_2 cp1047 (none) cp1047

test_file_3 (none) utf8 iso8859-1

test_file_3 iso8859-1 utf8 iso8859-1

test_file_3 cp1047 utf8 iso8859-1

22 IBM Open Enterprise SDK for Python 3.9: User's Guide

Chapter 8. Virtual environments and considerations

IBM Open Enterprise SDK for Python provides the venv module for creating lightweight virtual
environments. This module allows you to manage separate package installations for different projects. To
create a virtual environment, run the venv module as a script with the directory path as the following
command:

python3 -m venv /path/to/new/virtual/environment

The previous command creates a target directory and a bin subdirectory that contains a copy of the
Python binaries files and link to standard libraries. If you want to pull all packages bundled with IBM Open
Enterprise SDK for Python into the virtual environments, run the above command with --system-site-
packages option:

python3 -m venv /path/to/new/virtual/environment --system-site-packages

The previous command creates the virtual environments that contain all the IBM Open Enterprise SDK for
Python bundled packages such as: Numpy, cffi, cryptography, zos_util, and so on.

IBM Open Enterprise SDK for Python contains additional packages for compatibility with z/OS. These
packages come in two groups:

1. Packages that contains additional features to interact with z/OS Unix System Services, such as file
tagging and EBCDIC encodings.

2. Prebuilt PyPI packages. By default, creating a virtual environment creates a clean environment, which
means no packages installed. Specifying the --system-site-packages flag exposes these
additional packages contained within IBM Open Enterprise SDK for Python, so that they can be used
within your virtual environment. This action is required if you need to install a package that has
dependencies on one of these bundled packages. Otherwise, pip installs packages from PyPI which
can lead to installation failure.

Once you create a virtual environment, you can activate it by running the following line:

. </path/to/new/virtual/environment/>/bin/activate

For more information about installing packaging by using pip and virtual environments, see Installing
packages using pip and virtual environments (https://packaging.python.org/guides/installing-using-pip-
and-virtual-environments/) and venv — Creation of virtual environments (https://docs.python.org/3.9/
library/venv.html?highlight=venv#module-venv) in the official Python documentation.

© Copyright IBM Corp. 2021 23

https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/
https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/
https://docs.python.org/3.9/library/venv.html?highlight=venv#module-venv
https://docs.python.org/3.9/library/venv.html?highlight=venv#module-venv

24 IBM Open Enterprise SDK for Python 3.9: User's Guide

Chapter 9. Debugging

You can debug an IBM Open Enterprise SDK for Python application by using the built-in source code
debugger via the pdb module.

The pdb module is part of the Python standard library and can be used to set conditional breakpoints,
expression evaluation, view stack frames, and step through the code line by line. The code below shows
an example where a breakpoint is set inside a for loop.

import pdb
for i in range(10):
 pdb.set_trace()
 i_square = i * i
 print("The square of {} is: {}".format(i, i_square))

You don't necessarily need to import pdb in an application to debug. You can invoke the debugger on a
script by calling it from the command line. Create a new file called pdb_debugger.py and add the
following lines:

import os, sys

SCRIPT_DIR, SCRIPT_NAME = os.path.split(os.path.abspath(__file__))
PARENT_DIR = os.path.dirname(SCRIPT_DIR)
filename = __file__

def func_a():
 x = 5
 y = 15

 z = x + y

 return z

def func_b():

 sum = 0
 for i in range(5):
 sum = sum + i

 return sum

if __name__ == '__main__':
 print("Running {}".format(SCRIPT_NAME))

 z_ret = func_a()

 sum_ret = func_b()

 print("z_ret: {} \t\t sum_ret: {}".format(z_ret, sum_ret))

To invoke the debugger, run the script with the following command:

python3 -m pdb pdb_debugger.py

You can see the debug prompt at the first line of the file and you can then step through the code by using
the commands outline in the pdb docs. For example, to break func_b when it is called, execute the
following command in the prompt:

break func_b

This command registers the breakpoint at that function call. Start the file execution by inputting the
command:

c

This command now starts executing the code line by line and stops the execution just before the first line
of the func_b function.

© Copyright IBM Corp. 2021 25

Alternatively, you can achieve the same by passing additional parameters when invoking the debugger to
run the script:

python3 -m pdb -c "break func_b" pdb_debugger.py

More information about the capabilities and documentation of the pdb module, see pdb — The Python
Debugger (https://docs.python.org/3/library/pdb.html) in the official Python documentation.

Python also includes the trace module, which can be used to monitor functions and line execution. You
can use the useful features that are provided by the trace module such as code-coverage and you can
run the module either from the command prompt or incorporate the module into the program itself.

The example below gives a brief overview of the capabilities of using the trace module.

Since the trace module can create associated files that hold the trace results, create a subfolder that
houses the code to be run:

$ mkdir -p fibonacci

Create the files with the following code:

* fibonacci/fibonacci.py

"""
In mathematics, the Fibonacci numbers, form a sequence, called the Fibonacci sequence, such
that each number is the
sum of the two preceding ones, starting from F(0) = 0 and F(1) = 1, and for any integer n > 1:
F(n) = F(n-1) + F(n-2).
[wikipedia](https://en.wikipedia.org/wiki/Fibonacci_number)
"""
def fib(x):
 print("Processing fib({})".format(x))
 if x<0:
 print("Input needs to be a positive integer")
 elif x==1:
 return 0
 elif x==2:
 return 1
 else:
 return fib(x-1)+fib(x-2)
if __name__ == '__main__':
 print(fib(15))

* fibonacci/main.py

from fibonacci import fib
def main():
 print ("In the main program.")
 fib(4)
 return
if __name__ == '__main__':
 main()

* fibonacci_trace.py

import trace
from fibonacci.fibonacci import fib
tracer = trace.Trace(count=False, trace=True)
tracer.run('fib(4)')

To see which statements are being executed as the program runs, run the command:

python -m trace --trace fibonacci/main.py

To run the code coverage to see which lines are run and which are skipped, use the --count option:

python -m trace --count fibonacci/main.py

To see relationships between function calls, run the command:

26 IBM Open Enterprise SDK for Python 3.9: User's Guide

https://docs.python.org/3/library/pdb.html

python -m trace --listfuncs fibonacci/main.py

For more details, run the command:

python -m trace --listfuncs --trackcalls fibonacci/main.py

To invoke the trace from a python script, run the command:

python fibonacci_trace.py

You can learn more about the module and its full set of capabilities at trace — Trace or track Python
statement execution (https://docs.python.org/3/library/trace.html) in the official Python documentation.

Chapter 9. Debugging 27

https://docs.python.org/3/library/trace.html

28 IBM Open Enterprise SDK for Python 3.9: User's Guide

Chapter 10. Troubleshooting

This chapter describes some common issues that you might encounter while creating your IBM Open
Enterprise SDK for Python applications.

• Fatal Python Error: Failed to get random numbers
• Python execution failure due to semaphore exhaustion
• “Not found error for encodings module” on page 30
• “Errors when using distutils” on page 30
• “Extended precision floating point support issue in NumPy library” on page 31
• “Errors for incorrectly tagged files” on page 31
• “Issues building and installing PyPI packages” on page 31
• “NumPy exec_command return value issue” on page 31
• “Packages unable to install cffi within a virtual environment” on page 32
• “Redirecting to a file in a shell script results in garbled output” on page 32
• “UnicodeDecodeError error message” on page 32

For more troubleshooting information about multiprocessing considerations, see “Multiprocessing
considerations” on page 32.

For more troubleshooting information about tagging files, see “Tagging files” on page 32.

Fatal Python Error: Failed to get random numbers
Fatal Python error: _Py_HashRandomization_Init: failed to get random numbers to initialize
Python

The above error shows up when you try to run Python without enabling Integrated Cryptographic Services
Facility (ICSF). ICSF is typically responsible for supplying random data for /dev/urandom. You can run
the following command to verify whether ICSF is enabled or not on your system.

head -c10 /dev/urandom

If ICSF is enabled, you will see random data and if it is not enabled on your system, you will encounter
Internal Error.

For more information including installation guide, please refer to ICSF System Programmer's Guide
(SC14-7507) and ICSF Administrator's Guide (SC14-7506).

Python execution failure due to semaphore exhaustion
When semaphore exhaustion occurs on a machine, it can cause Python programs to fail in various ways.
One common example will be an error message as follows:

_multiprocessing.SemLock(PermissionError: [Errno 139] EDC5139I Operation not permitted.

To diagnose whether semaphore exhaustion is an issue, you can run the following command to examine
the number of semaphores that your user is currently using.

ipcs | grep <your ID>

If you run ipcs -y, you can get the limits for semaphores or the shared memory. If the number reported
is close to that number, then it's likely that you are hitting the limit when running Python.

© Copyright IBM Corp. 2021 29

https://www-304.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSICSFFmidHCR77C0sc147507/$file/csfb200_icsf_spg_hcr77c0.pdf
https://www-304.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSICSFFmidHCR77C0sc147506/$file/csfb300_icsf_admin_hcr77c0.pdf

The following example shows how to approach cleaning up semaphore usage under your user id:

ipcs | grep <your ID> | awk '{print $2}' > semaphores_example.txt
for i in $(cat semaphores_example.txt) ; do { ipcrm -s $i >> /dev/null 2>&1; }; done;
for i in $(cat semaphores_example.txt) ; do { ipcrm -m $i >> /dev/null 2>&1; }; done;
rm semaphores_example.txt

Not found error for encodings module
You might run a Python script and get encodings module not found errors. The presence of the
PYTHONHOME environment variable can lead to the mixing of Python versions:

$ python3
Fatal Python error: initfsencoding: unable to load the file system codec
ModuleNotFoundError: No module named 'encodings'

Current thread 0x26b7980000000001 (most recent call first):
CEE5207E The signal SIGABRT was received.
ABORT instruction

This error is generally caused by setting the PYTHONHOME environment variable to a conflicting location.
Try to set the PYTHONHOME environment variable and execute Python again using the following
commands:

$ unset PYTHONHOME
$ python3

Errors when using distutils
• If you see the following errors,

FSUM3010 Specify a file with the correct suffix (.C, .hh, .i, .c, .i, .s, .o, .x, .p, .I,
or .a), or a corresponding data set name....

export the following environment variables:

export _CC_CCMODE=1
export _CXX_CCMODE=1
export _C89_CCMODE=1
export _CC_EXTRA_ARGS=1
export _CXX_EXTRA_ARGS=1
export _C89_EXTRA_ARGS=1

• If you see the following warnings,

WARNING CCN3236 /usr/include/unistd.h:1169 Macro name _POSIX_THREADS has been redefined.

you can safely ignore as Python forces POSIX thread behavior in modules for compatibility reasons.

If you see the similar error with xlc:

"/usr/include/unistd.h", line 1169.16: CCN5848 (S) The macro name "_POSIX_THREADS" is already
defined with a different definition.

then setting the appropriate qlanglvl with redefmac can be used to work around this.

For both xlclang and xlc, if non-POSIX thread behavior is required, you might undefine this macro in
your source files. This action should be done with care and is not recommended.

• If you see the following error while trying to install a package:

error: [Errno 129] EDC5129I No such file or directory.: '/bin/xlc'

This means the package that you are attempting to install requires a C compiler. If you have one in a
non-standard location, you can specify it with the following command:

30 IBM Open Enterprise SDK for Python 3.9: User's Guide

CC=<path to C compiler>
CXX=<path to C++ compiler>

If you do not have a C/C++ compiler installed on your system, you can acquire xlc or xlclang at the IBM
z/OS XL C/C++ product page (https://www.ibm.com/ca-en/marketplace/xl-cpp-compiler-zos). For more
details about CCMODE, see setting CCMODE step in “Customization and environment configuration” on
page 7.

Extended precision floating point support issue in NumPy library
The NumPy library in IBM Open Enterprise SDK for Python does not support direct string conversion to the
long double data type. Instead, literals and strings are parsed to a double precision floating point
number followed by a conversion to the long double number. This indirect conversion introduces precision
and range problems for numbers outside of the double precision range.

Errors for incorrectly tagged files
If you see an error as the following error message:

SyntaxError: Non-UTF-8 code starting with '\x84' in file test.py on line 1, but no encoding
declared; see http://python.org/dev/peps/pep-0263/ for details

ensure that the file is either encoded as ASCII or IBM-1047 and correctly tagged. The interpreter doesn't
attempt to auto-detect the file encoding if the file is already tagged. If the file is correctly tagged and
encoded, check the non-printable characters in the file.

Issues building and installing PyPI packages
Not all packages can be built by using the default options provided in Python, and a given PyPI package
may not contain xlc compiler definitions. You can often avoid compile failures, for example, changing c
standard level, by using the environment variable CFLAGS.

For packages requiring C11 and above, you can use IBM XL C/C++ V2.x.1 (https://www-01.ibm.com/
servers/resourcelink/svc00100.nsf/pages/zosDownloads?OpenDocument).

If a failure to import a library after a successful install happens, the following error message will be
displayed:

Import Error: CEE3512S An HFS load of module <path to filename.so> failed. The system return
code is 0000000130 and the reason code is 0BDF0C27.

A package shared library may get tagged incorrectly when using the xlc utility. Verify that the shared
library is untagged by running the following line:

ls -alT <path to filename.so>

If the file is tagged, with the output being similar to the following line:

t ISO8859-1 T=on

you can remove the tag with the following command:

chtag -r <filename.so>

NumPy exec_command return value issue
The Numpy exec_command function of Numpy can be used to execute shell commands. Numpy uses the
subprocess module to execute commands by using the default shell /bin/sh. While executing these
commands, only the user-provided environment variables are passed to the subprocess. On z/OS, if the
_BPXK_AUTOCVT environment variable is not set to ON, the default output from terminal commands might
be in EBCDIC, which causes a mismatch error since the return value is expected to be in ASCII. To avoid

Chapter 10. Troubleshooting 31

https://www.ibm.com/ca-en/marketplace/xl-cpp-compiler-zos
https://www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosDownloads?OpenDocument
https://www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosDownloads?OpenDocument

this issue, you should follow the command line below to set an environment variable in the subprocess to
get the return value in ASCII.

_BPXK_AUTOCVT='ON'

Packages unable to install cffi within a virtual environment

c/_cffi_backend.c:15:10: fatal error: 'ffi.h' file not found

The above error shows up when you try to install a package and require ffi.h file into a virtual environment
without using site-packages. IBM Open Enterprise SDK for Python is distributed with several packages
installed, including cffi. To get access when using a virtual environment, create the environment with the
flag --system-site-packages as the following example:

<path to python3 install>/bin/python3 -m venv --system-site-packages venv

Redirecting to a file in a shell script results in garbled output
If you are redirecting to a file in a shell script and notice that the Python output is garbled, set the
following environment variables:

export _TAG_REDIR_ERR=txt
export _TAG_REDIR_IN=txt
export _TAG_REDIR_OUT=txt

UnicodeDecodeError error message

UnicodeDecodeError: 'utf-8' codec can't decode byte 0xa3 in position 0: invalid start byte

This error is returned when there is a conversion error. This error message usually refers to a file that is
opened is tagged incorrectly, or has a wrong encoding specified. To verify whether the encodings are
correct, see Chapter 7, “Codesets and translation,” on page 17 for more details.

Multiprocessing considerations
IBM Open Enterprise SDK for Python sets the default method for creating new processes to spawn. Fork is
known to cause crashes of subprocesses in a multithreaded context and is the default used in most Unix
systems. If you port an application from a Unix system, you might need to make some changes to your
codebase to make it compatible. For a description of the differences between the fork and the spawn, and
potentially any changes that are required, see The spawn and forkserver start methods (https://
docs.python.org/3/library/multiprocessing.html#the-spawn-and-forkserver-start-methods).

If you use fork, the most common symptom is getting a runtime error as follows:

RuntimeError: can't start new thread

Tagging files
IBM Open Enterprise SDK for Python supports both EBCDIC and ASCII input files. It attempts to
autodetect file encodings, but it is highly recommended that all source files be tagged with their correct
encodings.

You can use the chtag utility to tag input files that are not EBCDIC text, which is the default encoding for
input files on z/OS.

Binary files
To tag a file as binary, use the following command:

32 IBM Open Enterprise SDK for Python 3.9: User's Guide

https://docs.python.org/3/library/multiprocessing.html#the-spawn-and-forkserver-start-methods
https://docs.python.org/3/library/multiprocessing.html#the-spawn-and-forkserver-start-methods
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.bpxa500/chtag.htm

chtag -b <path/to/binary/file>

To verify if the file has the binary tag, use the following command:

ls -T <path/to/binary/file>

You get the following output:

b binary T=off path/to/binary/file

Enhanced ASCII support
Some applications take advantage of Enhanced ASCII support, which requires ASCII encoded text files
to be tagged as ASCII text files. Python applications on z/OS also support reading files that are tagged as
ASCII text files.

To tag a file as an ASCII text file, use the following command:

chtag -tc ISO8859-1 <path/to/ascii/file>

To verify that a file is tagged as an ASCII text file, use the following command:

ls -T <path/to/ascii/file>

You get the following output:

t ISO8859-1 T=on path/to/ascii/file

Usage
If you have some source files on an ASCII platform and you want to use them on z/OS, you can tag those
files with the following steps:

1. Create a zip file of your source files on the ASCII platform.
2. Unzip the zip file on z/OS.
3. Tag all text files by using the following command:

chtag -tc ISO8859-1

4. Tag all binary files by using the following command:

chtag -b

To copy files remotely from an ASCII platform to z/OS, you can use the sftp command, which converts
every file from ASCII to EBCDIC as it copies. In this case, tagging is not necessary.

If you are redirecting to a file in a shell script, set the following environment variables; otherwise you get
garbled output.

export _TAG_REDIR_ERR=txt
export _TAG_REDIR_IN=txt
export _TAG_REDIR_OUT=txt

Troubleshooting
For more information about troubleshooting incorrectly tagged files, see “Errors for incorrectly tagged
files” on page 31.

Chapter 10. Troubleshooting 33

34 IBM Open Enterprise SDK for Python 3.9: User's Guide

Chapter 11. Support, best practices, and resources

This section lists IBM Open Enterprise SDK for Python support, best practices, and learning resources.

• “Support” on page 35
• “Best practices” on page 36
• “Learning resources” on page 37

Support
To find help about IBM Open Enterprise SDK for Python, it is important to collect as much information as
possible about your installation configuration.

To establish what version of IBM Open Enterprise SDK for Python is in use, run the following command:

python3 --version

The version of Python is displayed.

To get more details about the exact build of the IBM Open Enterprise SDK for Python, run the following
command:

python3 -c “import sys; print(sys.version)”

This prints additional information about Python.

IBM Open Enterprise SDK for Python includes the python pip utility for working with modules and
packages. To establish what version of pip is in use, run the following command:

pip3 --version

The version of the pip utility is displayed.

To get more details about the libraries shipped with IBM Open Enterprise SDK for Python, run the
following command:

pip3 list

The versions of all installed libraries will be displayed.

Note: Only cffi, cryptography, ebcdic, numpy, pip, pycparser, setuptools, six and setuptools are officially
supported by IBM Open Enterprise SDK for Python.

Online self-help
Online documentation is available on this Knowledge Center. You can also download the PDF format
documentation for offline use.

Getting IBM experts to solve your problem by opening a case
Paid IBM Subscription & Support (S&S) entitles you to world-class IBM support for IBM Open Enterprise
SDK for Python. Get IBM support by opening a case. First, obtain the SMP/E edition and purchase S&S.
Once you have purchased S&S, open a case after logging in with your IBM customer ID to request support
from IBM. If you need help on opening a case, see IBM Support page.

General Help
For help with writing Python programs, working with the standard library or other general inquiries, see
https://docs.python.org/3.9/.

© Copyright IBM Corp. 2021 35

https://www.ibm.com/support/knowledgecenter/SSCH7P_3.9.0/welcome.html
https://www.ibm.com/support/knowledgecenter/SSCH7P_3.9.0/python.pdf
https://www.ibm.com/support/knowledgecenter/SSCH7P_3.9.0/python.pdf
https://www.ibm.com/mysupport/s/topic/0TO0z000000ZjwhGAC
https://www.ibm.com/mysupport/s/?language=en_US
https://docs.python.org/3.9/

Best practices

Virtual environments
When you install packages via pip, you might want to create a virtual environment to isolate package
installation from the global installation directory. You can create a virtual environment with the following
command:

python3 -m venv <name of venv>

After you create a virtual environment, you can activate it by sourcing the script that is located in
<name of venv>/bin/activate and then deactivate it with the command deactivate. You can
verify your current venv by checking your shell prompt that should now be prefixed with <name of
venv>. Once using a venv, all pip installed packages are placed in <name of venv>/lib/
python3.9/site-packages. You can reference the following commands:

$ python3 -m venv my_venv
$. my_venv/bin/activate
(my_venv) $ pip3 install <package> # this will install into the venv
(my_venv) $ deactivate # this will deactivate the venv
$ # note the shell prompt is no longer prefixed

Note: If you want to use any of the bundled packages such as Numpy in your venv, you must add the
option --system-site-packages, to verify that these packages are in your venv by simply running the
following commands:

(my_venv) $ pip3 list
Package Version
---------- -------
numpy 1.18.2

For more information on virtual environments, refer to the CPython official documentation at venv.

Security and pip
Pip is a tool that connects to the internet and executes setup files. It is advised that you never run pip as
a privileged user or with any elevated permissions, since pip runs arbitrary code to install packages.
Additionally, if you run pip as an elevated user, you might inadvertently globally install packages, which
can alter the intended behavior of Python for all users.

Multiprocessing
Multiprocessing enables side-stepping of the Global Interpreter Lock in CPython, which is useful not only
for task parallelization, but also for preventing long-lived tasks, for example, handling https requests
from blocking the main flow of the program. Multiprocessing is available in Python as the
multiprocessing package, where processes can be created by using the Pool class, which offers a
convenient way for setting up the parallel processing and the Process class. It is useful for controlling
individual processes.

Here is a multiprocessing example with the Pool class:

from multiprocessing import Pool

def times_two(x):
 return 2 * x

if __name__ == "__main__":
 pool = Pool(100)
 print(pool.map(times_two, [x for x in range(1000)])) #[0, 2, 4, … , 1998]

Here is a multiprocessing example with the Process class:

from multiprocessing import Process
import time

36 IBM Open Enterprise SDK for Python 3.9: User's Guide

https://docs.python.org/3/library/venv.html#venv-def

def long_process(seconds):
 print("long_process started.")
 time.sleep(int(seconds))
 print("long_process finished.")

if __name__ == "__main__":
 proc = Process(target=long_process, args=('10',))
 proc.start()
 print("Hi from the main process.")
 proc.join()

For further information on multiprocessing, see multiprocessing topic in the official Python reference.

Unit testing and code coverage
Python includes two separate but similar tools to aid you to test your code. The first tool is unittest,
which is used to create and run distinct unit tests:

import unittest
def test_func(a, b):
 return a + b
class ExampleTest(unittest.TestCase):
 def test_add(self):
 self.assertEqual(test_func(1,2), 3)
if __name__ == '__main__':
 unittest.main()

You can run the above example with the following commands:

python3 <filename.py>
python3 -m unittest <filename.py>

For more information about the built-in unit testing framework, see unittest in the official Python
documentation.

The second module that Python includes for testing is doctest. Instead of having separate unittest
files, doctest is used for inline testing directly into the function itself. It is useful for testing pure
functions, and not meant to replace tradition unit testing:

def test_func(a, b):
 '''
 Return the sum of a + b
 >>> test_func(5, 5)
 10
 >>> test_func(5.0, 5.0)
 10.0
 '''
 return a + b
if __name__ == "__main__":
 import doctest
 doctest.testmod()

You can run the above example with the following commands:

python3 -m doctest -v <filename.py>
python3 <filename.py>

For more information about doctest, see doctest in the official Python documentation.

In addition to unit testing, code coverage tooling can assist with determining what hasn’t been tested by
showing which lines haven’t been run by the interpreter. While there are no built-in code coverage tools in
a Python distribution, PyPI has multiple code coverage frameworks that integrate with both the built-in
unit testing framework and other PyPI testing frameworks.

Learning resources
This topic lists both Python community resources and IBM resources that you can refer to.

Chapter 11. Support, best practices, and resources 37

https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Process
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/doctest.html

Python community resources
• Python Community
• Official Python 3 Documentation
• Beginner's Guide to Python
• Python Developer's Guide
• PyVideo.org - Talks from various Python conferences
• The Python Package Index
• NumPy - A package for scientific computing

IBM resources
• Explore IBM Systems
• IBM Community
• IBM Online Software Catalog
• Redbooks® Introduction to z/OS
• RedHat Ansible® - A platform for IT automation
• Running Pandas on IBM Python
• Using IBM Open Enterprise Python for z/OS and ZOAU to Work With Datasets
• Using Python to Work with Db2® Data
• Z Open Automation Utilities

38 IBM Open Enterprise SDK for Python 3.9: User's Guide

https://www.python.org/community/
https://docs.python.org/3/
https://wiki.python.org/moin/BeginnersGuide
https://devguide.python.org
https://pyvideo.org/
https://pypi.org
https://numpy.org
https://www.ibm.com/it-infrastructure
https://community.ibm.com/community/user/home
https://www.ibm.com/products/software
http://www.redbooks.ibm.com/redbooks.nsf/redbookabstracts/crse0304.html?Open
https://www.ansible.com/
https://community.ibm.com/community/user/ibmz-and-linuxone/blogs/steven-pitman1/2020/10/02/running-pandas-on-ibm-open-enterprise-python-for-z
https://community.ibm.com/community/user/ibmz-and-linuxone/blogs/austin-wells1/2020/12/11/using-ibm-open-enterprise-python-for-zos-and-zoau
https://community.ibm.com/community/user/ibmz-and-linuxone/blogs/steven-pitman1/2020/11/05/using-python-for-zos-to-work-with-db2-data
https://www.ibm.com/support/knowledgecenter/SSKFYE_1.0.2/zoautil_purpose.html

IBM®

Product Number: 5655-PYT

SC28-3143-01 (2021-01-12 updated)

	Contents
	Chapter 1. Overview
	Chapter 2. Blogs and videos
	Chapter 3. Installation and configuration
	Installing and configuring the SMP/E edition
	Installing and configuring the PAX edition
	Customization and environment configuration

	Chapter 4. Getting started with IBM Open Enterprise SDK for Python
	Chapter 5. Package documentation for zos_util
	Chapter 6. Information on using distutils module
	Chapter 7. Codesets and translation
	Supported codesets
	Tagging behaviors

	Chapter 8. Virtual environments and considerations
	Chapter 9. Debugging
	Chapter 10. Troubleshooting
	Multiprocessing considerations
	Tagging files

	Chapter 11. Support, best practices, and resources
	Support
	Best practices
	Learning resources

